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Representations and Clebsch–Gordan coefficients for the
Jordanian quantum algebra Uh(sl(2))
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Vakgroep Toegepaste Wiskunde en Informatica, Universiteit Gent, Krijgslaan 281–S9, B9000
Gent, Belgium

Received 15 October 1997

Abstract. Representation theory for the Jordanian quantum algebraUh(sl(2)) is developed.
Closed form expressions are given for the action of the generators ofUh(sl(2)) on the basis
vectors of finite-dimensional irreducible representations. It is shown how representation theory of
Uh(sl(2)) has a close connection to the combinatorial identities involving summation formulae.
A general formula is obtained for the Clebsch–Gordan coefficientsCj1,j2,jn1,n2,m(h) of Uh(sl(2)).
These Clebsch–Gordan coefficients are shown to coincide with those ofsu(2) for n1+ n2 6 m,
but for n1 + n2 > m they are, in general, a non-zero monomial inhn1+n2−m.

1. Introduction

Viewing a quantum group as a quantum automorphism group acting on a non-commuting
space [1–3], one often requires the extra condition of the existence of a central determinant
in the quantum matrix group. For two-by-two matrices, this condition restricts the quantum
groups essentially to only two classes [4], namely the standardSLq(2) quantum group
and the JordanianSLh(2) quantum group. The quantum groupSLh(2) was introduced
in [5], and the corresponding quantum algebra (or quantized universal enveloping algebra)
Uh(sl(2)) was given in [6]. A universalR-matrix for Uh(sl(2)) was constructed in [7].

The main object of this paper is to develop representation theory of the Jordanian
quantum algebraUh(sl(2)), and in particular construct Clebsch–Gordan coefficients. The
finite-dimensional highest weight representations ofUh(sl(2)) were given in [8], first by
a direct construction, and then by factorizing the corresponding Verma module. In [8]
the action of theUh(sl(2)) generators on a finite-dimensional representation was not given
explicitly. An important construction was developed by Abdesselamet al [9]: they gave a
nonlinear relation between the generators ofUh(sl(2)) and the classical generators ofsl(2).
As a consequence of this relation, they obtained expressions for the action of theUh(sl(2))
generatorsH , X andY (see the following section for their definition) on basis vectors of the
finite-dimensional irreducible representations. These expressions are in closed form, except
for the action of the generatorY . Using this nonlinear map, Aizawa [10] constructed finite-
and infinite-dimensional representations ofUh(sl(2)), and considered the tensor product of
two representations. Moreover, he gives some examples of Clebsch–Gordan coefficients.

Our present work is motivated by the fact thatsl(2) or su(2) representations appear in
many physical theories, and often their Clebsch–Gordan coefficients are fundamental in these
theories. Since representation theory ofUh(sl(2)) is so closely related to that ofsu(2), and
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could be used as the algebraic structure underlying deformations of such physical models, an
important aspect to study are the Clebsch–Gordan coefficients ofUh(sl(2)). In the present
paper it is shown how an explicit formula forUh(sl(2)) Clebsch–Gordan coefficients can
be obtained.

In section 2, we give the defining relations forUh(sl(2)), and the nonlinear relation
between thesl(2) generators andUh(sl(2)) generators. In section 3, closed forms for the
action of the three generatorsH , X andY of Uh(sl(2)) acting on the basis vectors of finite-
dimensional irreducible representations are determined. ForH andX, these expressions
correspond to those of [9]; the determination of the explicit action ofY is new and is
found using a number of combinatorial identities (lemmas 1 and 2). In section 4 the
tensor product of two representations is considered. In this tensor product we show the
existence of an auxiliary basis which behaves like the uncoupled basis vectors in the tensor
product of twosu(2) representations. Using this auxiliary basis, theUh(sl(2)) Clebsch–
Gordan coefficients are easily determined in section 5, and some examples and properties
are discussed in section 6.

A curious aspect of the results in this paper (and more generally ofUh(sl(2))
representation theory) is that they are closely related to non-trivial combinatorial identities
(see lemmas 1, 2 and 4). The identities needed here have on one side a (definite or
indefinite) sum of hypergeometric terms, and a closed form expression on the other. To find
closed form expressions for such summations is a problem that can be solved completely
algorithmically [11]: for indefinite summations this can be done by means of Gosper’s
algorithm; for definite summations this is done by means of Zeilberger’s algorithm. For
both algorithms, programs are available in Maple or Mathematica. In the appendix, we
comment on the proofs of these combinatorial identities.

2. Definition and relation to sl(2)

The Jordanian quantum algebraUh(sl(2)) is an associative algebra with unity and generated
by X, Y andH , subject to the relations

[H,X] = 2
sinhhX

h
[H, Y ] = −Y (coshhX)− (coshhX)Y

[X, Y ] = H. (2.1)

Herein,h is the deformation parameter. We shall assume that|h| < 1. In the limit h→ 0,
Uh(sl(2)) reduces to the universal enveloping algebra ofsl(2). The Hopf algebra structure
of Uh(sl(2)) is given in [6]; here, we are only interested in the comultiplication, which
reads

1(X) = X ⊗ 1+ 1⊗X
1(Y) = Y ⊗ ehX + e−hX ⊗ Y
1(H) = H ⊗ ehX + e−hX ⊗H. (2.2)

The irreducible finite-dimensional highest weight representations ofUh(sl(2)) can be
obtained by using the invertible map fromsl(2) to Uh(sl(2)), given in [9]. With the
following definitions

Z+ = 2

h
tanh

hX

2
Z− =

(
cosh

hX

2

)
Y

(
cosh

hX

2

)
(2.3)

it follows that the elements{H,Z+, Z−} satisfy the commutation relations of a classical
sl(2) basis:

[H,Z±] = ±2Z± [Z+, Z−] = H. (2.4)
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The relations (2.3) can be inverted, see the following section, and thus with every
finite-dimensional irreduciblesl(2) representation there corresponds a finite-dimensional
irreducible representation ofUh(sl(2)). Thesesl(2) representations are labelled by a number
j , with 2j a non-negative integer; the representation space isV (j) with basisejm, where
m = −j,−j + 1, . . . , j . The action ofsl(2) on this basis is given by

Hejm = 2mejm

Z±ejm =
√
(j ∓m)(j ±m+ 1)ejm±1. (2.5)

For most of the computations in this paper, it is easier to work with another basis ofV (j)

related to the above basis by

vjm = αj,mejm with αj,m =
√
(j +m)!/(j −m)!. (2.6)

The matrix elements of thesl(2) generators are then given by

Hvjm = 2mvjm Z+vjm = vjm+1 Z−vjm = (j +m)(j −m+ 1)vjm−1 (2.7)

wherevjj+1 = 0. Clearly, if for an operator the matrix elements in thev-basis have been
determined, the matrix elements in thee-basis follow immediately using (2.6).

3. Representations ofUh(sl(2))

In this section we wish to give explicit expressions for the matrix elements ofH , X and
Y in the v-basis. ForH , this is trivial, see (2.7). ForX, one first determines the action of
ehX. From relation (2.3) one finds that

ehX =
(

1+ h
2
Z+

)(
1− h

2
Z+

)−1

. (3.1)

Then the action ofZ+ in the v-basis implies

ehXvjm = vjm + 2
j−m∑
k=1

(
h

2

)k
v
j

m+k. (3.2)

Thus in this representation one can write ehX = 1+ N1, with N1 a nilpotent matrix. Then
hX = log(1+N1) = N1−N2

1/2+N3
1/3− · · · , and one obtains the following action ofX

in the representation spaceV (j) :

Xvjm =
b(j−m−1)/2c∑

k=0

(h/2)2k

2k + 1
v
j

m+1+2k. (3.3)

Up to a scaling of the basis vectors, (3.3) coincides with [9, equation (23)]. The action of
Y is more difficult to determine explicitly; in [9, equation (35)] an expression is given but
the matrix elements still involve a single sum. Here we shall show that it can actually be
given in closed form. Let us use the relation

Y =
(

cosh
hX

2

)−1

Z−

(
cosh

hX

2

)−1

(3.4)

and first determine the matrix form of(cosh(hX/2))−1 in thev-basis. In this basis ofV (j),
one can write(

cosh
hX

2

)2

= 1

2
(1+ coshhX) = 1

2

(
1+ ehX + e−hX

2

)
= 1+N2 (3.5)
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where, by (3.2),N2 is again a nilpotent matrix whose matrix elements follow from those of
ehX:

N2v
j
m =

b(j−m)/2c∑
k=1

(h/2)2kvjm+2k. (3.6)

Then, in this representation(
cosh

hX

2

)−1

= (1+N2)
−1/2 =

∞∑
n=0

(−1)n(1/2)n
Nn

2

n!
(3.7)

where(a)n is the notation for the Pochhammer symbol:

(a)n =
{
a(a + 1) · · · (a + n− 1) if n = 1, 2, . . .

1 if n = 0.
(3.8)

Using the explicit powers ofN2 in the action of (3.7) onvjm, the contributions to the
coefficient ofvjm+2k (k > 0) in (1+N2)

−1/2v
j
m are(

h

2

)2k k∑
n=1

(−1)n
(1/2)n
n!

(
k − 1

n− 1

)
. (3.9)

Next, we use

Lemma 1. For k > 0 integer,

k∑
n=1

(−1)n
(1/2)n
n!

(
k − 1

n− 1

)
= − 1

22k−1

(2k − 2)!

k!(k − 1)!
.

As a consequence, one finds the explicit action of(cosh(hX/2))−1 in the v-basis:(
cosh

hX

2

)−1

vjm = vjm − 2
b(j−m)/2c∑

k=1

tk

(
h

4

)2k

v
j

m+2k (3.10)

with tk = (2k − 2)!/k!(k − 1)!. Using (3.4), (3.10) and (2.7), one determines the action of
Y ,

Yvjm =
(

cosh
hX

2

)−1

Z−

(
vjm − 2

∑
k>1

tk(h/4)
2kv

j

m+2k

)
=
(

cosh
hX

2

)−1(
(j +m)(j −m+ 1)vjm−1

−2
∑
k>1

tk(h/4)
2k(j +m+ 2k)(j −m− 2k + 1)vjm+2k−1

)
= (j +m)(j −m+ 1)

(
v
j

m−1− 2
∑
l>1

tl(h/4)
2lv

j

m+2l−1

)
−2

∑
k>1

tk(h/4)
2k(j +m+ 2k)(j −m− 2k + 1)

×
(
v
j

m+2k−1− 2
∑
l>1

tl(h/4)
2lv

j

m+2k+2l−1

)
. (3.11)
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In this last expression, the coefficient ofvjm−1 is (j + m)(j − m + 1). The coefficient of

v
j

m+1 is

−2(j +m)(j −m+ 1)t1h
2/16− 2(j +m+ 2)(j −m− 1)t1h

2/16
= h2/4− (j −m)(j +m+ 1)h2/4. (3.12)

Finally, we determine the coefficient ofvjm+2s−1 (s > 2) in (3.11); it reads

−2(j +m)(j −m+ 1)ts(h/4)
2s − 2(j +m+ 2s)(j −m− 2s + 1)ts(h/4)

2s

+4(h/4)2s
s−1∑
k=1

(j +m+ 2k)(j −m− 2k + 1)tkts−k. (3.13)

In order to give a closed form for this coefficient, we need to find an expression for∑
k tkts−kk

n with n = 0, 1 and 2. This is done with the help of the following lemma.

Lemma 2. Let s > 2 be integer, then

s−1∑
k=1

(2k − 2)!

k!(k − 1)!

(2s − 2k − 2)!

(s − k)!(s − k − 1)!
kn =



(2s − 2)!

s!(s − 1)!
if n = 0

(2s − 2)!

2(s − 1)!2
if n = 1

s(2s − 2)!

2(s − 1)!2
− 4s−2 if n = 2.

Using these three results, it follows from (3.13) that the coefficient ofv
j

m+2s−1 (s > 2)
is 4s(h/4)2s = (h/2)2s . Thus we finally obtain the explicit action ofY on thev-basis:

Yvjm = (j +m)(j −m+ 1)vjm−1− (j −m)(j +m+ 1)

(
h

2

)2

v
j

m+1

+
b(j−m+1)/2c∑

s=1

(
h

2

)2s

v
j

m−1+2s . (3.14)

Thus the first equation of (2.7) together with equations (3.3) and (3.14) determine the
action of the generatorsH , X and Y of Uh(sl(2)) on the finite-dimensional irreducible
representations in closed form.

4. Tensor product of two representations

The action of any of the generatorsH , X or Y on the tensor product of two representations
is determined by the comultiplication. The comultiplication rule onH , X andY induces a
comultiplication onH , Z±. The purpose of this section is to show that the tensor product
V (j1) ⊗ V (j2) decomposes into a direct sum of representations isomorphic toV (j), where
j = j1+ j2, j1+ j2− 1, . . . , |j1− j2|, and to determine the Clebsch–Gordan coefficients in

e(j1j2)j
m =

∑
n1,n2

Cj1,j2,j
n1,n2,m

(h)ej1
n1
⊗ ej2

n2
(4.1)

such thate(j1j2)j
m is a standarde-basis ofV (j), i.e.

1(H)e(j1j2)j
m = 2me(j1j2)j

m

1(Z±)e(j1j2)j
m =

√
(j ∓m)(j ±m+ 1)e(j1j2)j

m±1 . (4.2)
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The first step towards this goal is to find expressions of1(H) and1(Z+) in terms
of H and Z+. For H , the problem is easy, and follows from (2.2) and (3.1), see
also [10, equation (3.2)]:

1(H) = H ⊗ ehX + e−hX ⊗H = H ⊗ 1+ 1⊗H + 2H ⊗
∞∑
n=1

(
hZ+

2

)n
+
∞∑
n=1

(−hZ+
2

)n
⊗ 2H. (4.3)

To determine1(Z+), denotet = ehX andz = (h/2)Z+. Thenz = (t − 1)(t + 1)−1 and
t = (1+ z)(1− z)−1. Moreover,

1(t) = t ⊗ t =
(

1+ 2
∞∑
k=1

zk
)
⊗
(

1+ 2
∞∑
k=1

zk
)
. (4.4)

Thus1(z) =∑∞k,l=0 λk,lz
k ⊗ zl , and the coefficients can be obtained from

(1⊗ 1−1(z))1(t) = 1⊗ 1+1(z)
which must hold since(1− z)t = (1+ z). This leads to

1(z) = (1⊗ z+ z⊗ 1)(1⊗ 1− z⊗ z+ z2⊗ z2− · · ·)
and we obtain

1(Z+) = (1⊗ Z+ + Z+ ⊗ 1)

( ∞∑
n=0

(−h2/4)nZn+ ⊗ Zn+
)
. (4.5)

An explicit expression for1(Z−) is much more complicated (see, e.g., equation (5.3)
of [10]), but we do not need it here.

In the tensor product spaceV (j1) ⊗ V (j2), we now define an auxiliary basis that is
expressed in terms of thev-basisvj1

m1 ⊗ vj2
m2. Define the coefficients (see (3.8) for the

notation of Pochhammer symbols)

b
m1,m2
k,l =


(−2m1− k)l(−2m2− l)k

k!l!
if k > 0 andl > 0

0 otherwise
(4.6)

and

a
m1,m2
k,l = (−1)k(h/2)k+l(bm1,m2

k,l − bm1,m2
k−1,l−1). (4.7)

The auxiliary vectors are defined as follows:

wj1,j2
m1,m2

=
j1−m1∑
k=0

j2−m2∑
l=0

a
m1,m2
k,l v

j1
m1+k ⊗ v

j2
m2+l . (4.8)

Clearly, they also form a basis forV (j1)⊗V (j2) since the relation between the vectorswj1,j2
m1,m2

and the vectorsvj1
m1 ⊗ vj2

m2 is given by an upper triangular matrix with 1’s on the diagonal.
This auxiliary basis has been introduced because the action of1(H) and1(Z±) on it is
simple. The idea of introducing such an auxiliary basis comes from [10]; however, the
coefficients used in [10, equation (3.9)] are single sum expressions and no closed forms.
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Proposition 3. The action of1(H) on the auxiliary basis vectors is given by

1(H)wj1,j2
m1,m2

= 2(m1+m2)w
j1,j2
m1,m2

.

Proof. To prove this, use (4.3), (4.8), and the explicit action ofH andZ+ on thev-basis:

1(H)wj1,j2
m1,m2

= 1(H)
(∑
k,l>0

a
m1,m2
k,l v

j1
m1+k ⊗ v

j2
m2+l

)
=
∑
k,l>0

a
m1,m2
k,l

(
2(m1+ k +m2+ l)vj1

m1+k ⊗ v
j2
m2+l + 4(m1+ k)vj1

m1+k

⊗
∑
n>1

(h/2)nvj2
m2+l+n + 4(m2+ l)

∑
n>1

(−h/2)nvj1
m1+k+n ⊗ v

j2
m2+l

)
= 2(m1+m2)w

j1,j2
m1,m2
+ 2

∑
k,l>0

v
j1
m1+k ⊗ v

j2
m2+l

(
(k + l)am1,m2

k,l + 2(m1+ k)

×
l∑

n=1

(h/2)nam1,m2
k,l−n + 2(m2+ l)

l∑
n=1

(−h/2)nam1,m2
k−n,l

)
. (4.9)

Thus the proposition is proved provided we can show that the coefficient ofv
j1
m1+k ⊗ v

j2
m2+l

in the last summation is zero. Consider first
l∑

n=1

(h/2)nam1,m2
k,l−n = (−1)k(h/2)k+l

l∑
n=1

(b
m1,m2
k,l−n − bm1,m2

k−1,l−n−1). (4.10)

We shall show that this last sum can be performed and yields
l∑

n=1

(b
m1,m2
k,l−n − bm1,m2

k−1,l−n−1) =
2m1+ k − l + 1

2m1+ k b
m1,m2
k,l−1 . (4.11)

Using the symmetrybm1,m2
k,l = bm2,m1

l,k , one can use the same result (4.11) to find

l∑
n=1

(−h/2)nam1,m2
k−n,l = (−1)k(h/2)k+l

(
2m2+ l − k + 1

2m2+ l
)
b
m1,m2
k−1,l . (4.12)

Then the coefficient ofvj1
m1+k ⊗ v

j2
m2+l in the summation part of (4.9) is, up to a factor

(−1)k(h/2)k+l , equal to

(k + l)(bm1,m2
k,l − bm1,m2

k−1,l−1)+ 2(m1+ k)
(

2m1+ k − l + 1

2m1+ k
)
b
m1,m2
k,l−1

+2(m2+ l)
(

2m2+ l − k + 1

2m2+ l
)
b
m1,m2
k−1,l (4.13)

and using the definition of the coefficientsbm1,m2
k,l this is trivially shown to be zero. What

remains to be proved is (4.11). This follows from the following lemma.

Lemma 4. Let α, β, γ be arbitrary parameters,l > 0 integer, and

g(l) = (α)l(β)l

(l + 1)!(γ )l
((γ − α − β)l + γ − 1− αβ).

Then forn > 0 integer,
n∑
l=0

g(l) = γ − 1− (α)n+1(β)n+1

(n+ 1)!(γ )n
.

The sum (4.11) then follows from this lemma by puttingα = 1−k−2m1, β = 1+2m2

andγ = 2− k + 2m2. This completes the proof of proposition 3. �
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Proposition 5. The action of1(Z+) on the auxiliary basis vectors is given by

1(Z+)wj1,j2
m1,m2

= wj1,j2
m1+1,m2

+ wj1,j2
m1,m2+1 (4.14)

wherewj1,j2
m1,m2 is interpreted as zero if one of the indicesmi > ji .

Proof. This is proved by direct computation, and does not involve any combinatorial
identities. The left-hand side of (4.14) yields

(1⊗ Z+ + Z+ ⊗ 1)

(∑
k,l>0

∑
n>0

a
m1,m2
k,l (−h2/4)nvj1

m1+k+n ⊗ v
j2
m2+l+n

)
= (1⊗ Z+ + Z+ ⊗ 1)

{ ∑
k,l>0

(∑
n>0

a
m1,m2
k−n,l−n(−h2/4)n

)
v
j1
m1+k ⊗ v

j2
m2+l

}
.

(4.15)

From definition (4.7) of the coefficientsam1,m2
k,l it follows that∑

n>0

a
m1,m2
k−n,l−n(−h2/4)n = (−1)k(h/2)k+l

∑
n>0

(b
m1,m2
k−n,l−n − bm1,m2

k−n−1,l−n−1)

= (−1)k(h/2)k+lbm1,m2
k,l . (4.16)

Putting this back in (4.15) gives∑
k,l>0

(−1)k(h/2)k+lbm1,m2
k,l v

j1
m1+k ⊗ v

j2
m2+l+1+

∑
k,l>0

(−1)k(h/2)k+lbm1,m2
k,l v

j1
m1+k+1⊗ vj2

m2+l

=
∑
k,l>0

(−1)k(h/2)k+l−1(b
m1,m2
k,l−1 − bm1,m2

k−1,l )v
j1
m1+k ⊗ v

j2
m2+l . (4.17)

On the other hand, the right-hand side of (4.14) leads to∑
k,l>0

(a
m1,m2+1
k,l−1 − am1+1,m2

k−1,l )v
j1
m1+k ⊗ v

j2
m2+l =

∑
k,l>0

(−1)k(h/2)k+l−1

×(bm1,m2+1
k,l−1 − bm1,m2+1

k−1,l−2 − bm1+1,m2
k−1,l + bm1+1,m2

k−2,l−1 )v
j1
m1+k ⊗ v

j2
m2+l . (4.18)

So, it remains to show that

b
m1,m2
k,l−1 − bm1,m2

k−1,l = bm1,m2+1
k,l−1 − bm1,m2+1

k−1,l−2 − bm1+1,m2
k−1,l + bm1+1,m2

k−2,l−1 (4.19)

and this follows trivially from the definition (4.6) of theb-coefficients. �

Proposition 5. The action of1(Z−) on the auxiliary basis vectors is given by

1(Z−)wj1,j2
m1,m2

= (j1+m1)(j1−m1+ 1)wj1,j2
m1−1,m2

+ (j2+m2)(j2−m2+ 1)wj1,j2
m1,m2−1.

(4.20)

Proof. The proof of this property is rather long and technical. Leth, z± be the standard
basis ofsl(2), with

[h, z±] = ±2z± [z+, z−] = h. (4.21)

sl(2) has an action on the basis elementsvjm, given by the same expressions as in (2.7).
The standard comultiplication forsl(2), δ(x) = x ⊗ 1+ 1⊗ x for everyx ∈ sl(2), induces
an action on elements ofV (j1) ⊗ V (j2):

δ(h)vj1
m1
⊗ vj2

m2
= 2(m1+m2)v

j1
m1
⊗ vj2

m2

δ(z+)vj1
m1
⊗ vj2

m2
= vj1

m1+1⊗ vj2
m2
+ vj1

m1
⊗ vj2

m2+1

δ(z−)vj1
m1
⊗ vj2

m2
= (j1+m1)(j1−m1+ 1)vj1

m1+1

⊗vj2
m2
+ (j2+m2)(j2−m2+ 1)vj1

m1
⊗ vj2

m2+1. (4.22)
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Thus the action ofδ(h) andδ(z+) on the basisvj1
m1⊗ vj2

m2 is the same as the action of1(H)
and1(Z+) on the auxiliary basiswj1,j2

m1,m2, by propositions 3 and 5. We shall show that this
holds forZ− too. First of all, forsl(2) we know how the tensor product decomposes, so
let

v(j1j2)j
m =

∑
m1+m2=m

cj1,j2,j
m1,m2,m

vj1
m1
⊗ vj2

m2
(4.23)

wherej ∈ J = {j1 + j2, j1 + j2 − 1, . . . , |j1 − j2|}, andcj1,j2,j
m1,m2,m are the Clebsch–Gordan

coefficients in thev-basis, related to the usualsu(2) Clebsch–Gordan coefficients by

cj1,j2,j
m1,m2,m

= αj,m

αj1,m1αj2,m2

Cj1,j2,j
m1,m2,m

(4.24)

see (2.6). Then there holds

δ(h)v(j1j2)j
m = 2mv(j1j2)j

m

δ(z+)v(j1j2)j
m = v(j1j2)j

m+1

δ(z−)v(j1j2)j
m = (j +m)(j −m+ 1)v(j1j2)j

m−1 . (4.25)

We also define

w(j1j2)j
m =

∑
m1+m2=m

cj1,j2,j
m1,m2,m

wj1,j2
m1,m2

(4.26)

and by the remark that the action ofδ(h) andδ(z+) on the basisvj1
m1 ⊗ vj2

m2 is the same as
the action of1(H) and1(Z+) on the auxiliary basiswj1,j2

m1,m2, it follows that

δ(H)w(j1j2)j
m = 2mw(j1j2)j

m δ(Z+)w(j1j2)j
m = w(j1j2)j

m+1 . (4.27)

It remains to find the action of1(Z−) on w(j1j2)j
m ; let us denote it by

1(Z−)w(j1j2)j
m =

∑
j ′

∑
m′
µ
j,j ′
m,m′w

(j1j2)j
′

m′ (4.28)

with µj,j
′

m,m′ the coefficients to be determined. By acting with the relation

1(H)1(Z−)−1(Z−)1(H) = −21(Z−) (4.29)

onw(j1j2)j
m , it follows that the coefficientsµj,j

′
m,m′ are zero unlessm′ = m−1. Write νj,j

′
m for

µ
j,j ′
m,m−1; then we have so far

1(Z−)w(j1j2)j
m =

∑
j ′
νj,j

′
m w

(j1j2)j
′

m−1 (4.30)

wherej ′ ∈ J such thatj ′ > |m− 1|. Next, we use the relation

1(Z+)1(Z−)−1(Z−)1(Z+) = 1(H). (4.31)

Acting with (4.31) onw(j1j2)j
m yields

for j 6= j ′: νj,j
′

m = νj,j ′m+1 (4.32)

for j ′ = j : νj,jm − νj,jm+1 = 2m. (4.33)

In particular, by acting with (4.31) onw(j1j2)j

j , one finds thatνj,jj = 2j , and thatνj,j
′

j = 0

for j ′ > j . Now (4.33) is a difference equation inm with boundary conditionνj,jj = 2j ,
so it has a unique solution given by

νj,jm = (j +m)(j −m+ 1). (4.34)
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From (4.32) andνj,j
′

j = 0 for j ′ > j it follows that νj,j
′

m = 0 for all j ′ > j . Using this and

acting with (4.31) onw(j1j2)j

j−1 implies thatνj,j−1
j−1 = 0, and thus by (4.32) thatνj,j−1

m = 0 for

all m. Similarly, acting with (4.31) onw(j1j2)j

j−2 implies thatνj,j−2
j−2 = 0, and thus by (4.32)

that νj,j−2
m = 0 for all m. One can continue and thus show by induction thatν

j,j ′
m = 0 also

for all j ′ < j . The final result is that

1(Z−)w(j1,j2)j
m = (j +m)(j −m+ 1)w(j1,j2)j

m−1 . (4.35)

In other words,1(Z−) has on the basisw(j1,j2)j
m the same action asδ(z−) on the basis

v
(j1j2)j
m . By relations (4.23) and (4.26), it follows that the action of1(Z−) on the basis
w
j1,j2
m1,m2 is the same as the action ofδ(z−) on the basisvj1

m1⊗vj2
m2. This proves proposition 6.

�

5. Clebsch–Gordan coefficients forUh(sl(2))

Let us first normalize the auxiliary basiswj1,j2
m1,m2 as follows:

ej1,j2
m1,m2

= wj1,j2
m1,m2

/(αj1,m1αj2,m2). (5.1)

Then (4.8) and (2.6) imply that

ej1,j2
m1,m2

=
∑
k,l>0

A
m1,m2
k,l e

j1
m1+k ⊗ e

j2
m2+l (5.2)

where

A
m1,m2
k,l = am1,m2

k,l

αj1,m1+kαj2,m2+l
αj1,m1αj2,m2

. (5.3)

Note that theA-coefficients depend implicitly also onj1 andj2: Am1,m2
k,l = 0 unlessm1 and

m1+k belong to{−j1,−j1+1, . . . , j1} andm2 andm2+ l belong to{−j2,−j2+1, . . . , j2}.
From the previous section it follows that the following relations hold:

1(H)ej1,j2
m1,m2

= 2(m1+m2)e
j1,j2
m1,m2

1(Z+)ej1,j2
m1,m2

=
√
(j1−m1)(j1+m1+ 1)ej1,j2

m1+1,m2
+
√
(j2−m2)(j2+m2+ 1)ej1,j2

m1,m2+1

1(Z−)ej1,j2
m1,m2

=
√
(j1+m1)(j1−m1+ 1)ej1,j2

m1−1,m2
+
√
(j2+m2)(j2−m2+ 1)ej1,j2

m1,m2−1.

(5.4)

Thus the action of1(H), 1(Z±) on ej1,j2
m1,m2 is the same as the action ofδ(h), δ(z±) on

e
j1
m1 ⊗ ej2

m2. Consequently, we can write

e(j1j2)j
m =

∑
m1+m2=m

Cj1,j2,j
m1,m2,m

ej1,j2
m1,m2

(5.5)

with Cj1,j2,j
m1,m2,m the classicalsu(2) Clebsch–Gordan coefficients given by [12]

Cj1,j2,j
m1,m2,m

= δm1+m2,m

(
(j1+ j2− j)!(j1− j2+ j)!(−j1+ j2+ j)!

(j1+ j2+ j + 1)!

)1/2

×((j1+m1)!(j1−m1)!(j2+m2)!(j2−m2)!(j +m)!(j −m)!(2j + 1))1/2

×
∑
k

(−1)k/(k!(j1+ j2− j − k)!(j1−m1− k)!(j2+m2− k)!

×(j − j2+m1+ k)!(j − j1−m2+ k)!). (5.6)
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The action of1(H) and1(Z±) is then indeed

1(H)e(j1j2)j
m = 2me(j1j2)j

m

1(Z±)e(j1j2)j
m =

√
(j ∓m)(j ±m+ 1)e(j1j2)j

m±1 (5.7)

i.e. the same as the standard action (2.5) ofH andZ± on a basisejm. Consequently, also
for 1(X) and1(Y) the action one(j1j2)j

m is the same as the standard action ofX andY on
a basisejm, and thee(j1j2)j

m are genuinely ‘coupled states’ forUh(sl(2)). The decomposition
of the tensor product forUh(sl(2)) is the same as insu(2):

V (j1) ⊗ V (j2) =
j1+j2⊕

j=|j1−j2|
V (j). (5.8)

From (5.2) and (5.5), it follows that we can write

e(j1j2)j
m =

∑
m1+m2=m

Cj1,j2,j
m1,m2,m

∑
k,l>0

A
m1,m2
k,l e

j1
m1+k ⊗ e

j2
m2+l

=
∑
n1,n2

( ∑
m1+m2=m

Cj1,j2,j
m1,m2,m

A
m1,m2
n1−m1,n2−m2

)
ej1
n1
⊗ ej2

n2
. (5.9)

Thus we have the following.

Theorem 7. The Clebsch–Gordan coefficients forUh(sl(2)), in

e(j1j2)j
m =

∑
n1,n2

Cj1,j2,j
n1,n2,m

(h)ej1
n1
⊗ ej2

n2
(5.10)

are given by

Cj1,j2,j
n1,n2,m

(h) =
∑

m1+m2=m
Cj1,j2,j
m1,m2,m

A
m1,m2
n1−m1,n2−m2

(5.11)

with Cj1,j2,j
m1,m2,m the usualsl(2) Clebsch–Gordan coefficients, andAm1,m2

n1−m1,n2−m2
determined by

(5.3) and (4.7).

One question that naturally arises is whether these Clebsch–Gordan coefficients satisfy
an orthogonality relation. The answer is negative. In order to have an orthogonality relation,
one needs a∗-Hopf algebra [13, section 4.1.F]. ForUh(sl(2)) the obvious choice of the∗-
operation would be that induced fromH ∗ = H , Z∗± = Z∓ (making thee-basis ofV (j)

an orthonormal basis). However, this∗-operation is not compatible with the coalgebra
structure.

Nevertheless, we have recently showed [14] that the present Clebsch–Gordan coefficients
do satisfy orthogonality-like relations, namely∑

n1,n2

(−1)j1+j2−jCj1,j2,j
n1,n2,m

(h)Cj1,j2,j
′

−n1,−n2,−m′(h) = δj,j ′δm,m′∑
j,m

(−1)j1+j2−jCj1,j2,j
n1,n2,m

(h)Cj1,j2,j

−n′1,−n′2,−m(h) = δn1,n
′
1
δn2,n

′
2
.

These relations were derived using special properties of the auxiliary coefficientsA
m1,m2
k,l

and the ordinary orthogonality relations forsu(2) Clebsch–Gordan coefficients; for more
details see [14].

We end this section by noting thatUh(sl(2)), and its Clebsch–Gordan coefficients, also
have another interpretation. Due to the invertible nonlinear map described in section 2, one
can identify the algebra part ofUh(sl(2)) with U(sl(2)). In other words, the Hopf algebra
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one is dealing with hasU(sl(2)) as algebra structure, with generatorsH , Z±, and defining
relations (2.4). There is no deformation in the algebra part. The deformation comes in at
the level of the coalgebra part: see, for example, (4.3) and (4.5). So, roughly speaking
we are dealing with the ordinarysl(2) algebra and its usual finite-dimensional irreducible
representations, but equipped with a deformed comultiplication. The deformation of the
Clebsch–Gordan coefficients then stems from this deformed coproduct.

6. Examples and conclusion

The formula (5.11) allows one to calculate theUh(sl(2)) Clebsch–Gordan coefficients
for arbitrary parameters, since the usualsl(2) coefficientsCj1,j2,j

m1,m2,m are known, and the
coefficientsAm1,m2

n1−m1,n2−m2
are determined in this paper. For example, one finds

C2,2,3
2,0,2(h) = C2,2,3

2,0,2 = 1/
√

2

C2,2,3
2,0,3(h) = 0

C2,2,3
2,0,−1(h) = −6h3C

2,2,3
0,−1,−1− 4

√
6h3C

2,2,3
1,−2,−1 = −18h3/

√
5.

More generally, supposem = n1+ n2+ p, then (5.11) becomes

Cj1,j2,j
n1,n2,m

(h) =
∑
m1

C
j1,j2,j
m1,m−m1,m

A
m1,m−m1
n1−m1,−n1+m1−p. (6.1)

First, let p = 0. SinceAm1,m2
k,l is zero if k or l are negative, it follows that the only

contribution in (6.1) is form1 = n1, and withAm1,m2
0,0 = 1 it follows thatCj1,j2,j

n1,n2,n1+n2
(h) =

C
j1,j2,j
n1,n2,n1+n2

. Next, suppose thatp > 0, then one can see that at least one of the indices of

A in (6.1) is negative, thus in this caseCj1,j2,j
n1,n2,n1+n2+p(h) = 0. Finally, suppose thatp < 0.

Now there can be a number of contributions in (6.1), and by (5.3) and (4.7) they all have
the same power ofh, namelyh−p. Thus we have the following property.

Proposition 8. The Clebsch–Gordan coefficients forUh(sl(2)) satisfy
• if m = n1+ n2 thenCj1,j2,j

n1,n2,m(h) = Cj1,j2,j
n1,n2,m;

• if m > n1+ n2 thenCj1,j2,j
n1,n2,m(h) = 0;

• if m < n1+ n2 thenCj1,j2,j
n1,n2,m(h) is a monomial inhn1+n2−m.

This proposition implies that the Clebsch–Gordan coefficientsCj1,j2,j
n1,n2,m(h) are simple

deformations of thesl(2) Clebsch–Gordan coefficients in the sense that forh = 0 one
has Cj1,j2,j

n1,n2,m(0) = C
j1,j2,j
n1,n2,m. As is well known, thesl(2) or su(2) representations play a

fundamental role in many physical models and theories, and so do their Clebsch–Gordan
coefficients. It would be interesting to investigate whether the present Clebsch–Gordan
coefficients ofUh(sl(2)) still have a physical interpretation in corresponding deformed
models or theories. The explicit formula given here, together with the properties mentioned,
should prove to be very helpful in such an investigation.

Appendix

Here, we give proofs of the combinatorial identities in lemmas 1, 2 and 4. The terms
appearing in the sums of these lemmas are hypergeometric terms [11]. The sums in
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lemmas 1 and 2 are definite sums, i.e. the summation limit also appears in the summand.
For such sums, Zeilberger’s algorithm [11, ch 6], which is also known as the method
of creative telescoping [15], can be used to find a recurrence relation. A Mathematica
implementationZb of Zeilberger’s algorithm can, for example, be found in the package
Zb.m [16]. Considering the sum of lemma 1,

f (k) =
k∑
n=1

(−1)n
(1/2)n
n!

(
k − 1

n− 1

)
(A.1)

Zeilberger’s algorithm yields the following recurrence relation forf (k):

2(k + 1)f (k + 1) = (2k − 1)f (k) (A.2)

with the initial conditionf (1) = −1/2. The closed form expression forf (k) then easily
follows and is given in lemma 1.

Lemma 2 is similar, with

fn(s) =
s−1∑
k=1

(2k − 2)!

k!(k − 1)!

(2s − 2k − 2)!

(s − k)!(s − k − 1)!
kn (A.3)

wheren = 0, 1 or 2. The recurrence relations obtained by Zeilberger’s algorithm (or by
the programZb) read

4(s − 1)f0(s)− (s + 1)f0(s + 1)+ 2(2s − 2)!

s!(s − 1)!
= 0 (A.4)

4(s − 1)f1(s)− sf1(s + 1)+ (2s − 2)!

(s − 1)!2
= 0 (A.5)

4f2(s)− f2(s + 1)+ (2s − 2)!

s!(s − 2)!
= 0. (A.6)

With the initial conditionsfn(2) = 1, the closed form expressions forfn(s) given in lemma 2
are deduced from these recurrence relations.

The statement in lemma 4 is rather different, in the sense that this is an indefinite
summation (i.e. the upper limit does not appear ing(l)). The term g(l) is again a
hypergeometric term however. For such summations Gosper’s algorithm [11, 17] decides
whether the sum can be written in closed form, and also gives the closed form if it exists.
The summation formula in lemma 4 is a direct output of the Mathematica programGosper
of the packageZb.m.

References

[1] Manin Yu I 1988Quantum Groups and Non-commutative Geometry(Montreal: Les Publications du CRM)
[2] Schupp P, Watts P and Zumino B 1992Lett. Math. Phys.25 139
[3] Dubois-Violette M and Launer G 1990Phys. Lett.245B 175
[4] Kupershmidt B A 1992 J. Phys. A: Math. Gen.25 L1239
[5] Zakrzewski S 1991Lett. Math. Phys.22 287
[6] Ohn Ch 1992Lett. Math. Phys.25 85
[7] Ballesteros A and Herranz F J 1996J. Phys. A: Math. Gen.29 L311
[8] Dobrev V K 1996 Representations of the Jordanian quantum algebraUh(sl(2)) Preprint IC/96/14, ICTP,

Trieste
[9] Abdesselam B, Chakrabarti A and Chakrabarti R 1996Mod. Phys. Lett.A 11 2883

[10] Aizawa N 1997J. Phys. A: Math. Gen.30 5981
[11] Petkov̌sek M, Wilf H S and Zeilberger D 1996A=B (Wellesley, MA: Peters)
[12] Edmonds A R 1960Angular Momentum in Quantum Mechanics(Princeton: Princeton University Press)
[13] Chari V and Pressley A 1994A Guide to Quantum Groups(Cambridge: Cambridge University Press)



1508 J Van der Jeugt

[14] Van der Jeugt J 1997 The Jordanian deformation of su(2) and Clebsch–Gordan coefficientsPreprint
q-alg/9709005

[15] Zeilberger D 1991J. Symb. Comput.11 195
[16] Paule P and Schorn M 1995J. Symb. Comput.20 673. Programs obtainable fromhttp://info.risc.uni-

linz.ac.at:70/labs-info/comblab/software/Summation/PauleSchorn.index.html.
[17] Gosper R W Jr 1978Proc. Natl Acad. Sci., USA75 40


