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Abstract. Representation theory for the Jordanian quantum algbéhta/(2)) is developed.
Closed form expressions are given for the action of the generatat (0f(2)) on the basis
vectors of finite-dimensional irreducible representations. It is shown how representation theory of
Uy (s1(2)) has a close connection to the combinatorial identities involving summation formulae.
A general formula is obtained for the Clebsch—Gordan coefficiénts zz‘fm(h) of U, (s1(2)).

These Clebsch—Gordan coefficients are shown to coincide with thasg)ffor ny +no < m,

but for n1 +ny > m they are, in general, a non-zero monomiakhiti 2=,

1. Introduction

Viewing a quantum group as a quantum automorphism group acting on a non-commuting
space [1-3], one often requires the extra condition of the existence of a central determinant
in the quantum matrix group. For two-by-two matrices, this condition restricts the quantum
groups essentially to only two classes [4], namely the standdrgd2) quantum group

and the JordaniaL,(2) quantum group. The quantum groufd,(2) was introduced

in [5], and the corresponding quantum algebra (or quantized universal enveloping algebra)
U, (s1(2)) was given in [6]. A universaR-matrix for U4, (sl(2)) was constructed in [7].

The main object of this paper is to develop representation theory of the Jordanian
guantum algebra/, (sl(2)), and in particular construct Clebsch—Gordan coefficients. The
finite-dimensional highest weight representationd/pfs/(2)) were given in [8], first by
a direct construction, and then by factorizing the corresponding Verma module. In [8]
the action of the&, (s/(2)) generators on a finite-dimensional representation was not given
explicitly. An important construction was developed by Abdessethal [9]: they gave a
nonlinear relation between the generatoré/pfs/(2)) and the classical generatorssét2).

As a consequence of this relation, they obtained expressions for the actionlgf(ithe2))
generatordd, X andY (see the following section for their definition) on basis vectors of the
finite-dimensional irreducible representations. These expressions are in closed form, except
for the action of the generatat. Using this nonlinear map, Aizawa [10] constructed finite-

and infinite-dimensional representationsiffis/(2)), and considered the tensor product of

two representations. Moreover, he gives some examples of Clebsch—Gordan coefficients.

Our present work is motivated by the fact tha2) or su(2) representations appear in
many physical theories, and often their Clebsch—Gordan coefficients are fundamental in these
theories. Since representation theonifyfsi(2)) is so closely related to that 6f:(2), and
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could be used as the algebraic structure underlying deformations of such physical models, an
important aspect to study are the Clebsch—Gordan coefficieriig (0f(2)). In the present

paper it is shown how an explicit formula féf,(sl(2)) Clebsch—Gordan coefficients can

be obtained.

In section 2, we give the defining relations i, (si(2)), and the nonlinear relation
between thes/(2) generators and, (s/(2)) generators. In section 3, closed forms for the
action of the three generatofs, X andY of U, (s/(2)) acting on the basis vectors of finite-
dimensional irreducible representations are determined. H-@nd X, these expressions
correspond to those of [9]; the determination of the explicit actiort o new and is
found using a number of combinatorial identities (lemmas 1 and 2). In section 4 the
tensor product of two representations is considered. In this tensor product we show the
existence of an auxiliary basis which behaves like the uncoupled basis vectors in the tensor
product of twosu(2) representations. Using this auxiliary basis, tiigsl/(2)) Clebsch—
Gordan coefficients are easily determined in section 5, and some examples and properties
are discussed in section 6.

A curious aspect of the results in this paper (and more generally/,@fl(2))
representation theory) is that they are closely related to non-trivial combinatorial identities
(see lemmas 1, 2 and 4). The identities needed here have on one side a (definite or
indefinite) sum of hypergeometric terms, and a closed form expression on the other. To find
closed form expressions for such summations is a problem that can be solved completely
algorithmically [11]: for indefinite summations this can be done by means of Gosper's
algorithm; for definite summations this is done by means of Zeilberger's algorithm. For
both algorithms, programs are available in Maple or Mathematica. In the appendix, we
comment on the proofs of these combinatorial identities.

2. Definition and relation to sl(2)

The Jordanian quantum algeldfa(s/(2)) is an associative algebra with unity and generated
by X, Y and H, subject to the relations

sinhi X

[H,X]=2 [H, Y] = —Y(coshhX) — (coshh X)Y

[X,Y]=H. (2.1)
Herein, h is the deformation parameter. We shall assume [thiat 1. In the limith — 0O,
U, (s1(2)) reduces to the universal enveloping algebraio®). The Hopf algebra structure
of U, (s1(2)) is given in [6]; here, we are only interested in the comultiplication, which
reads

AX)=X®1+10X

AY)=YRdX+e¥ gy

AH) =HeX +e"™* g H. (2.2)

The irreducible finite-dimensional highest weight representatiord), ¢f/(2)) can be
obtained by using the invertible map fromi(2) to U, (sl(2)), given in [9]. With the
following definitions
2 hX hX hX

Z, = Etanh7 Z_ = (coshT) Y (coshT) (2.3)
it follows that the element$H, Z,, Z_} satisfy the commutation relations of a classical
sl(2) basis:

[H, Z.] =427, [Z,,Z_]=H. (2.4)
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The relations (2.3) can be inverted, see the following section, and thus with every
finite-dimensional irreducible(2) representation there corresponds a finite-dimensional
irreducible representation of, (sI(2)). Thesesl(2) representations are labelled by a number
j, with 2j a non-negative integer; the representation spadéis with basise;,, where
m=—j,—j+1,...,j. The action ofs/(2) on this basis is given by

He{,; = Zmei;l
Zie) = /(i Fm)(jEm+De),. (2.5)

For most of the computations in this paper, it is easier to work with another basi&’of
related to the above basis by

vr{; = ajpme), with o, = \/(j +m)!/(j —m)l. (2.6)
The matrix elements of th€ (2) generators are then given by

th’; = 2mv,{1 Z+U;L = v‘,’;,H Z,U;L =G+my-—m+ 1)1);517l (2.7)
where U]j+1 = 0. Clearly, if for an operator the matrix elements in théasis have been

determined, the matrix elements in thdasis follow immediately using (2.6).

3. Representations oty (sl(2))

In this section we wish to give explicit expressions for the matrix elementd,0k and
Y in the v-basis. ForH, this is trivial, see (2.7). Fok, one first determines the action of
€"X. From relation (2.3) one finds that

X h o\
X =(1+=-z,)(1-=22.) . (3.1)
2 2
Then the action o, in the v-basis implies
. ) j—m h k )
¥l =v)+2) <§> vl (3.2)
k=1

Thus in this representation one can writé e= 1 4+ Ny, with N3 a nilpotent matrix. Then
hX =log(l+ N1) = N1 — N12/2+ Nf/3— ---, and one obtains the following action &f

in the representation spad¢é’’ :

L(j—m—1)/2] 2k
v /2%

= —V .
m pors 2k+1 m—+1+2k

(3.3)

Up to a scaling of the basis vectors, (3.3) coincides with [9, equation (23)]. The action of
Y is more difficult to determine explicitly; in [9, equation (35)] an expression is given but
the matrix elements still involve a single sum. Here we shall show that it can actually be
given in closed form. Let us use the relation

-1 -1
Y = <coshh7x) Z_ (cosh%) (3.4)

and first determine the matrix form ¢fosh(zX/2))* in the v-basis. In this basis o¥ /),
one can write

hX\? 1 1 X e hX
(cosh7> =5+ coshhX) = = <1+ +T

5 ) =14+ N, (3.5)
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where, by (3.2) N, is again a nilpotent matrix whose matrix elements follow from those of
X.

S LlGzmy/2) '
Novjy = > (h/2%v) . (3.6)
k=1
Then, in this representation
hx\t e NE
h— ) =@+ Ny) Y2 = —-1)"(1/2),—2 3.7
<c052> 1+ Np) ,,Zzo()(/)”-' 3.7)
where(a), is the notation for the Pochhammer symbol:
a(@a+1)---(a+n-1) ifn=12,...
n — . 3.8
@ { 1 if n = 0. (3:8)

Using the explicit powers ofV, in the action of (3.7) onwj,, the contributions to the
coefficient ofv;,_,, (k > 0) in (1+ Np)~Y?v;, are

N & L(1/2), (k-1
(5) > (=1 pr (n—1>' (3.9)

n=1

Next, we use

Lemma 1. Fork > 0 integer,

k( 1)ﬂ(1/2>,1 <k—l>_ 1 (2 —2)!
2. (- n \n—1) " 2% 1plk -1

n=1

As a consequence, one finds the explicit actiorfomishi(2X/2))~* in the v-basis:

Ax\ ! . lGomy/2l N2
(cosh7> vhi=v, -2 Y t"(Z) vl o (3.10)
k=1

with 7, = (2k — 2)!/k!(k — 1)!. Using (3.4), (3.10) and (2.7), one determines the action of
Yy

. hx\* : :
Yv) = <cosh7> zZ_ (v,’n - ZZIk(h/4)2kern+2k)

k>1
hx\ 7t ,
= (cosh7> ((j +m)(j —m+ Dv),_,

—Zztk(h/4)2"(j +m+2k)(j —m— 2k + 1)v;{1+2k—1>
o1

={G+m(—-—m+1) (”,{,1 - 22[,(h/4)21v,{,+2,1>
>1

=23 (/D +m+2k)(j —m — 2k + 1)
k>1

X <v}{;’L+2k—1 -2 Z I (h/4)21U,j;1+2k+21_1)- (3.11)

>1
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In this last expression, the coefficient mj_l is (j + m)(j —m + 1). The coefficient of
Uriu—l is
—2(j +m)(j —m + D1h?/16 — 2(j + m + 2)(j —m — 1)11h?/16

=h?/4— (j —m)(j +m + Dh?/4. (3.12)
Finally, we determine the coefficient mﬁ,%_l (s = 2) in (3.12); it reads

=2 +m)(j —m+ Dt;(h/D® —2(j +m +25)(j —m — 25 + D)t,(h/4?
s—1

+AR/HZ Y (G +m+ 2 —m — 2k + Dty (3.13)
k=1

In order to give a closed form for this coefficient, we need to find an expression for
> i tts—ik™ with n = 0, 1 and 2. This is done with the help of the following lemma.

Lemma 2. Lets > 2 be integer, then

(25 — 2)! .

G =D Tn=0
s 2k—2) (25 —2k—2)! (25 — 2)! .
Z = = ifn=1
okl (k— D! (s —b)l(s —k — D! 2(s — 1)!

s@s—2)! ., —

Using these three results, it follows from (3.13) that the coef‘ficien;{lgrfb_l (s >2)
is 4 (h/4)% = (h/2)%. Thus we finally obtain the explicit action of on thev-basis:

o . : . . h\?
Yv, =G +m(j—m+Dv,_—(G—m(@G+m+1) <§> Uhi1

LG=mtD/2) /N2
+ Z <§> vr]nfl+2s' (3.14)
s=1

Thus the first equation of (2.7) together with equations (3.3) and (3.14) determine the
action of the generator&l, X and Y of U,(sl(2)) on the finite-dimensional irreducible
representations in closed form.

4. Tensor product of two representations

The action of any of the generataks, X or Y on the tensor product of two representations
is determined by the comultiplication. The comultiplication rulenX andY induces a
comultiplication onH, Z.. The purpose of this section is to show that the tensor product
VU @ V2 decomposes into a direct sum of representations isomorphicitp where
j=ji+ jo, j1+ jo—1,...,|j1— jo|, and to determine the Clebsch—Gordan coefficients in
e’(rfljZ)j — Z Clvizi (h)e{& ® e;i‘zz (4.1)

ni,nz2,m
ni,nz

such thate/*?" is a standard-basis ofV ), i.e.
A(H)e(jljz)j — 2meliridi
m m
A(Z)eH T = J(GFm)(j £ m + Del. (4.2)
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The first step towards this goal is to find expressionsAgH/) and A(Z,) in terms
of H and Z,. For H, the problem is easy, and follows from (2.2) and (3.1), see
also [10, equation (3.2)]:

hz
AH)=H®¥ +e"™ @ H = H®1+1®H+2H®Z< *)
n=1

+Z( hZ+) ® 2H. (4.3)

To determineA(Z,), denoter = €X andz = (h/2)Z,. Thenz = (t — 1)t +1)~* and
t =1+ 2)(1-2)"1 Moreover,

A(t)=t®t=(l—i-ZZZk)@(l—i—ZZZk). (4.4)
k=1

k=1

Thus A(z) = Y 3o M2* ® 2, and the coefficients can be obtained from
1®1-AHAM) =101+ A(z)
which must hold sinc€l — z)r = (1+ z). This leads to
AR =(1®z+z0D(1®1-z®z+22®z%— )
and we obtain
ANZH)=(1®Z,+7Z, ® 1)(%(—;12/4)"21 ® Zi>. (4.5)
n=0

An explicit expression forA(Z_) is much more complicated (see, e.g., equation (5.3)
of [10]), but we do not need it here.

In the tensor product spacgé? @ VU2, we now define an auxiliary basis that is
expressed in terms of the-basisv;;, ® v,’,fz Define the coefficients (see (3.8) for the
notation of Pochhammer symbols)

—2m1 —k); (=2 —1

. (=2my — k)1 (=2ma — )i if k>0andl >0

B = k1! (4.6)
0 otherwise

and
a" = (=D (/2" B = BT ). (4.7)
The auxiliary vectors are defined as follows:

Ji—ma jo—m3

Jj2 — § § ml m2 Jl
wm1 my — m1+k ® vm2+l (48)

Clearly, they also form a basis fot') @ V2’ since the relation between the vectorg 2,

and the vector$>,£ql1 ® v, IS given by an upper triangular matrix with 1's on the diagonal.
This auxiliary basis has been introduced because the actiax\ &#f) and A(Z1) on it is
simple. The idea of introducing such an auxiliary basis comes from [10]; however, the
coefficients used in [10, equation (3.9)] are single sum expressions and no closed forms.
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Proposition 3. The action ofA(H) on the auxiliary basis vectors is given by
A(H)wjl‘-iz = 2(m1 _’_mz)w.isz

my,my my,my*

Proof. To prove this, use (4.3), (4.8), and the explicit actionfbfand Z . on thev-basis:

iz — ma,mz J1 J2
A(H)wml,mz - A(H)( ak,l vmlJrk ® vm2+l>
k,1>0

= Z e <2(m1 +k+mz+ Z)U£1+k ® Urjfzﬂ + 4(mq + k)vr{jﬁk
k,1>0

® > (/2" o +AMma+ DY (—h/D"E L, ® U}j122+l>

n>1 n>1

=2(my+mwihi +2 3 vl @vk <(k +Day't™ + 2(my + k)
k,1>0

1 ]
D2+ 2m ) Y2 ) @.9)
n=1 n=1

Thus the proposition is proved provided we can show that the coefficiewﬁlgg ® v,{fZH
in the last summation is zero. Consider first

! !
> (h/2) g = (=D (h/ 2y B — b, ). (4.10)
n=1 n=1
We shall show that this last sum can be performed and yields
]
2mi+k—1+4+1
LI — B ) = B, 411
;( k,—n k—l,l—n—l) 2m1+k k-1 ( )
Using the symmetry;'}"* = b7, one can use the same result (4.11) to find
i
0 mym 2mo+1—k+1 mym
;(—h/Z) apt"E = (=D (h/2)* (W) bz, (4.12)

Then the coefficient ob ,, ® v, in the summation part of (4.9) is, up to a factor
(=¥ (h/2)k, equal to

bml,mz

2mi+k—-1+1
T o k-1

(k + Db 7™ = b)) + 2(my + k) ( ok
2my+1—k+1
2my + 1

and using the definition of the coefficiertis; ™ this is trivially shown to be zero. What
remains to be proved is (4.11). This follows from the following lemma.

+2(mp +1) < biy? (4.13)

Lemma 4. Leta, B,y be arbitrary parameters> 0 integer, and
o
() = ( )z(?)z
+Dyn
Then forn > 0 integer,

o (a)il+1(,3)n+l
D=y —-1— —-—"—""—=.
;g() Y n+ D!

The sum (4.11) then follows from this lemma by puttiag= 1 —k —2mj, 8 = 1+ 2m;
andy = 2 — k + 2m,. This completes the proof of proposition 3. O

((y—a=PBl+y—-1-0ap).
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Proposition 5. The action ofA(Z,) on the auxiliary basis vectors is given by
A(Z+)w./1yj2 — wjlij + wjl,jz (4'14)

may,my my+1,mo my,mz+1

wherew;”2  is interpreted as zero if one of the indices > ;.

Proof. This is proved by direct computation, and does not involve any combinatorial
identities. The left-hand side of (4.14) yields

A®Zi+7Z,® 1)( Z Zazzl’mz(—hz/‘l)nvr];ﬁk-rn ® Urjr;22+l+n>

k10 n>0

=1®Zi+7Z:® 1){ Zo ( X(:)alrcn—l}:nf—n(_hz/ﬂ’)n)”}gﬁk ® Urj;tzz+z}-

k> n=
(4.15)

From definition (4.7) of the coefficientg”;"* it follows that
Y@ (A = (<D /MY B, = B )
n=0 n=0

= (=Drn/2 b (4.16)

Putting this back in (4.15) gives

D D 2 @ v+ D DT o @ v
k,1>0 k,1>0
= > (DA B — b L @ v . 4.17)
k,1>0
On the other hand, the right-hand side of (4.14) leads to
D@ =g ® v = Y (D R/
k,1>0 k,1>0

XL = B = B A B ® Uy (4.18)
So, it remains to show that

LT — by = b — et — e 4 g (4.19)
and this follows trivially from the definition (4.6) of the-coefficients. (]

Proposition 5.  The action ofA(Z_) on the auxiliary basis vectors is given by
AZ w2 = (j1 +m1) (o — ma+ Dw2 4 (o + ma) (j2 — ma + w2

mi,ma m1—1,mp my,mp—1"

(4.20)

Proof. The proof of this property is rather long and technical. ket be the standard
basis ofsi(2), with

[A, z4] = £2z4 [z4,z-] =h. (4.21)

sI(2) has an action on the basis elemenfs given by the same expressions as in (2.7).
The standard comultiplication foti (2), §(x) = x ® 1+ 1® x for everyx € si(2), induces
an action on elements of /Y @ V2

S(hyvjt @ v = 2(my + ma)v)k @ v)2

my

j1 J2 — 1 Jj2 i1 J2
8(Z+)U1111 ® Umz - UmlJrl ® Umz + Uml ® vm2+'1

8(z)vft @ v = (ji+m1)(j1—mi+ vy, 4 .
QU2 + (j2 +m2)(ja —mz2 + Dk @vyr . (4.22)

2
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Thus the action 08 () ands(z+) on the basiS);{%l ® v,’,fz is the same as the action of(H)

and A(Z,) on the auxiliary basis;,;’,, by propositions 3 and 5. We shall show that this
holds for Z_ too. First of all, forsi(2) we know how the tensor product decomposes, so
let

U’(njﬂz)j — Z c/dzd it @ g2 (4.23)

may,ma,m “nm;y mp
my+my=m

wherej € J = {(j1+ jo, 1+ jo— 1. ..., |j1 — jol}, andcii27, are the Clebsch-Gordan
coefficients in thev-basis, related to the usuak(2) Clebsch—Gordan coefficients by

el = R PO (4.24)

jl,mlajz.,mz

see (2.6). Then there holds

S(h)v(jljZ)j = 2mpUriaJ

m m

Sz = vl

8@ = (j+m)(j —m+ Do (4.25)
We also define

Wi = Y Gl i, (4.26

mi+moy=m

and by the remark that the action &f2) ands(z) on the basisu,{ql1 ® v,{fz is the same as
the action ofA(H) and A(Z.) on the auxiliary basisu;:;’,, it follows that

8(H)wr(njlj2)j — me’(njljz)j 8(Z+)wr(r{1j2)j — wgff)j~ (4.27)
It remains to find the action oA (Z_) on w*?”; let us denote it by

A(z_)wir{ijz)j — Z Zuilr;{m/w:r{/ljz)/ (4.28)
7w

with pdﬁfm the coefficients to be determined. By acting with the relation

AH)A(Z_) — A(Z_)A(H) = —2A(Z_) (4.29)
on w,(,{””j, it follows that the coeﬁicientaif;’, are zero unless’ = m — 1. Write v/,';j' for
ul’ 1 then we have so far |

AZ_ywifd = 37 v T (4.30)
I
where j’ € J such thatj’ > |m — 1|. Next, we use the relation
AZNAZ) — A(Z)AN(Zy) = A(H). (4.31)
Acting with (4.31) onw\{~?" yields
for j # j': vid =il (4.32)
for j' = j: vid — Il = 2m. (4.33)

In particular, by acting with (4.31) Ow;jljz)j’ one finds thavjj'j — 2/, and thatvjj,j’ _0
for j/ > j. Now (4.33) is a difference equation in with boundary conditiorvj’"f = 2j,
so it has a unique solution given by

vl =G +m)(j—m+1). (4.34)
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From (4.32) and)f'j’ =0 for j' > j it follows that vi" = 0 for all Jj' > j. Using this and
acting with (4.31) orw}/}{z” implies thatvjj'_jl’l = 0, and thus by (4.32) that,’ ' = 0 for
all m. Similarly, acting with (4.31) onw{/# implies thatv/;* = 0, and thus by (4.32)

that v’ 2 = 0 for all m. One can continue and thus show by induction tifat = 0 also
for all j/ < j. The final result is that

AZYywis27 = (j+m)(j —m + Dw/PT (4.35)

In other words,A(Z_) has on the basis;,ﬁ{l’jz” the same action a8(z_) on the basis
v/ By relations (4.23) and (4.26), it follows that the action &fZ_) on the basis
wi’2 is the same as the action &fz_) on the basisy,, ® vs%,. This proves proposition 6.
U

5. Clebsch—Gordan coefficients foid,(sl(2))

Let us first normalize the auxiliary basig/:”2, as follows:

Entilma = Winslma/ (Xjy.myQjpms)- (5.1)
Then (4.8) and (2.6) imply that
2 — my,mz Jj1 J2
Cnym, = Z Al ik ® €y (5.2)
k,1>0
where
o o
my,mp ___my,mp Jj1,m1+k&jo mo+l
Al Em e (5.3)

Ujym1jp,mo
Note that theA-coefficients depend implicitly also ojy and j2: A}'}™* = 0 unlessn; and
m1+k belong to{—j1, —j1+1, ..., ji} andmy andm,+1 belong to{— jo, —jo+1, ..., jo}.
From the previous section it follows that the following relations hold:

A(H)elk 2 = 2(my + ma)elt

may,ma my,ma
A(Zy)els2 = /(i —my) Gy +my+ Dels 2+ /(o — ma) (o + mz + Del2
AZyel? = /(i +m)(r—mi+ Dep”), + V(a+m2) (2 — ma+ e .
(5.4)
Thus the action ofA(H), A(Zs) on e, is the same as the action 8fh), 5(z+) on
e, ® exz,. Consequently, we can write
e e (5.5)

my,ma,m=my,my

my+moy=m
with Cj-727  the classicaku(2) Clebsch-Gordan coefficients given by [12]
civini g <(jl+j2—j)!(j1—j2+j)!(—j1+j2+j)!>l/2
e T (i+j2+Jj+D!
x((jr + mD! (1 — m)! (2 + m)! (o — m)!(j + m)I(j — m)!(2j + D)Y?
X Y (DMK Ga A+ 2 = § = 0N = m1 = k) (ja + ma — k)
k

X(J = jo+mi+Rj— j1—ma+ k. (5.6)
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The action of A(H) and A(Z4) is then indeed
A(H)e(jljZ)j = 2meliriai

m

A(Zy)e ST = (G F m)(j £m + 1)l (5.7)

i.e. the same as the standard action (2.5ffoénd Z.. on a basis;,. Consequently, also
for A(X) and A(Y) the action ore{*?’ is the same as the standard actionXoind Y on
a basises,, and theeY*?/ are genuinely ‘coupled states’ fof; (s/(2)). The decomposition
of the tensor product fa), (s/(2)) is the same as inu(2):
Jiti2
Vi gyl — @ v, (5.8)
J=lji—Jel
From (5.2) and (5.5), it follows that we can write
W = 3l 3 AL B e

mi+mo=m k,1>0

— E E Ji.J2. 0 A2 J1 J2
- ( le,mz,mAm—anz—mz)enl ® enz' (59)

ni,ny \myit+mo=m

Thus we have the following.

Theorem 7. The Clebsch—Gordan coefficients df(s/(2)), in

el =3zl (el ® el (5.10)
ni,nz
are given by
Cha ) = 3 Gl AL e (5.11)
mi+mo=m
with C/4727,, the usuals/(2) Clebsch-Gordan coefficients, and"2 , .. determined by

(5.3) and (4.7).

One question that naturally arises is whether these Clebsch—Gordan coefficients satisfy
an orthogonality relation. The answer is negative. In order to have an orthogonality relation,
one needs a-Hopf algebra [13, section 4.1.F]. Fof;,(s/(2)) the obvious choice of the-
operation would be that induced frofi* = H, Z* = Z- (making thee-basis of V/)
an orthonormal basis). However, thisoperation is not compatible with the coalgebra
structure.

Nevertheless, we have recently showed [14] that the present Clebsch—Gordan coefficients
do satisfy orthogonality-like relations, namely

Z(—l)j1+j2_jcjl’j2’j (h)cjl’jz’j, (h) — (Sj.j’am,m/

ni,ng,m —ny,—ng,—m’
ni,ny

D YRR CE T L () = 8By
1

. ni,np,m ,7;1’2,7;7,

J.m
These relations were derived using special properties of the auxiliary coefficigfits
and the ordinary orthogonality relations fen(2) Clebsch—Gordan coefficients; for more
details see [14].

We end this section by noting tha, (s/(2)), and its Clebsch—Gordan coefficients, also

have another interpretation. Due to the invertible nonlinear map described in section 2, one
can identify the algebra part &f, (s/(2)) with U(sl(2)). In other words, the Hopf algebra
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one is dealing with ha#/(s/(2)) as algebra structure, with generatéfs Z.., and defining
relations (2.4). There is no deformation in the algebra part. The deformation comes in at
the level of the coalgebra part: see, for example, (4.3) and (4.5). So, roughly speaking
we are dealing with the ordinaryi(2) algebra and its usual finite-dimensional irreducible
representations, but equipped with a deformed comultiplication. The deformation of the
Clebsch—Gordan coefficients then stems from this deformed coproduct.

6. Examples and conclusion

The formula (5.11) allows one to calculate th&(s/(2)) Clebsch—Gordan coefficients
for arbitrary parameters, since the usual2) coefficientsCyi;’27,, are known, and the
coefficientsA'*"2 are determined in this paper. For example, one finds

ni—maq,np—my
C3o2(n) = C3o3 = 1/V2
C3o3(h =0
C25%.(h) = —6h3C3?%} | — avBr®CcZ?; | = —18h°/V/5.
More generally, suppose = n; + n2 + p, then (5.11) becomes
Civizi (h) = Z le’jzj AMmLm—my (6.1)
my

ni,n2,m my,m—my,m*iny—my,—n1+mi—p-

First, let p = 0. Since A}’ is zero if k or [ are negative, it follows that the only

contribution in (6.1) is form = ny, and with A" = 1 it follows thatC;y2, .., (h) =
vl ., Next, suppose that > 0, then one can see that at least one of the indices of

A in (6.1) is negative, thus in this ca ;ﬁ{lﬁnﬁp(h) = 0. Finally, suppose thgt < O.
Now there can be a number of contributions in (6.1), and by (5.3) and (4.7) they all have

the same power of, namelyh—?. Thus we have the following property.

Proposition 8. The Clebsch—Gordan coefficients @ (s/(2)) satisfy
o if m =ny+ ny thenClri2l, (k) = CJEi20:

oif m>ny+ny thencﬁijﬁ’,@ (h) =0;
o if m < ny+ ny thenCih724,(h) is a monomial ing"tnz—,

This proposition implies that the Clebsch-Gordan coefficigts? . (k) are simple
deformations of thes/(2) Clebsch—Gordan coefficients in the sense that/foe 0 one
hasCiyi2m(0) = Civiz4,. As is well known, thesl(2) or su(2) representations play a
fundamental role in many physical models and theories, and so do their Clebsch—Gordan
coefficients. It would be interesting to investigate whether the present Clebsch—Gordan
coefficients ofi4, (s/(2)) still have a physical interpretation in corresponding deformed
models or theories. The explicit formula given here, together with the properties mentioned,
should prove to be very helpful in such an investigation.

Appendix

Here, we give proofs of the combinatorial identities in lemmas 1, 2 and 4. The terms
appearing in the sums of these lemmas are hypergeometric terms [11]. The sums in
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lemmas 1 and 2 are definite sums, i.e. the summation limit also appears in the summand.
For such sums, Zeilberger's algorithm [11,ch 6], which is also known as the method
of creative telescoping [15], can be used to find a recurrence relation. A Mathematica
implementationzb of Zeilberger's algorithm can, for example, be found in the package
Zb.m [16]. Considering the sum of lemma 1,

k
N, a2 (k=1
[k = ; yr=s (n j 1) (A.1)
Zeilberger’s algorithm yields the following recurrence relation fk):

2k+ D) fk+1) = (2k—1)f(k) (A.2)

with the initial condition f (1) = —1/2. The closed form expression fgi(k) then easily
follows and is given in lemma 1.
Lemma 2 is similar, with

S 2k -2 (25 — 2k —2)!
fn(s)=2( (& " (A3)

Kk =DV (s —k)I(s —k —1)!
wheren = 0, 1 or 2. The recurrence relations obtained by Zeilberger's algorithm (or by
the progranmizb) read

k=1

225 —2)!

4(S — 1)fo(S) — (S + 1)f0(S + 1) + |— = (A4)
slis — !
(25 — 2)!
4(S — 1)f1(S) — Sf]_(S + 1) + m =0 (A5)
(25 — 2)!
4fa(s) — fa(s +1) + m = (A.6)

With the initial conditionsf,,(2) = 1, the closed form expressions fff(s) given in lemma 2
are deduced from these recurrence relations.

The statement in lemma 4 is rather different, in the sense that this is an indefinite
summation (i.e. the upper limit does not appeargif)). The termg(/) is again a
hypergeometric term however. For such summations Gosper’s algorithm [11, 17] decides
whether the sum can be written in closed form, and also gives the closed form if it exists.
The summation formula in lemma 4 is a direct output of the Mathematica progsaper
of the packag&b.m.
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